Challenges of Managing Diabetes as a Chronic Condition in Black and Minority Ethnic Patients

Dr Naveed Younis, MD, FRCP
University Hospital South Manchester
April 2015

Which ethnic populations are at risk of Type 2 Diabetes and how common ?

Prevalence of DM in UK ethnic Population.

Minority ethnic group	Men	Women
Bangladeshi	8.2%	5.2%
Black African	5%	2.1%
Black Caribbean	10%	8.4%
Chinese	3.8%	3.3%
Indian	10.1%	5.9%
Irish	3.6%	2.3%
Pakistani	7.3%	8.6%
General population	4.3%	3.4%

Diabetes UK 2010 Key Stats in Diabetes (Report).

Prevalence of Diabetes Mellitus by age and ethnicity east London 2006-7

Noble D et al, BMJ 2011: 343d 7163

Ethnicity & Diabetes

- Type 2 diabetes is up to six times more common in people of South Asian descent and up to three times more common among people of African and African-Caribbean origin
- According to the Health Survey for England 2004, doctor-diagnosed diabetes is almost four times as prevalent in Bangladeshi men, and almost three times as prevalent in Pakistani and Indian men compared with men in the general population.
- Among women, diabetes is more than five times as likely among Pakistani women, at least three times as likely in Bangladeshi and Black Caribbean women, and two-and-a-half times as likely in Indian women, compared with women in the general population.

Key differences in Diabetes in Ethnic Populations

Key differences in Diabetes in Ethnic Populations

- Age of onset:
- Family history:
- BMI and Diabetes Risk:
- Risk of complications:
 - Microvascular
 - Macro vascular
- Risk of Cardiovascular disease:

Ethnicity and obesity

For a given BMI South Asians have a higher fat percentage than those of European origin http://pdf.thelancet.com/pdfdownload?uid=llan.363.9403.clinical_picture.28291.1&x=x.pdf

Abdominal obesity and waist circumference thresholds

New IDF criteria:

	Men	Women
Europid	≥94 cm (37.0 in)	≥80 cm (31.5 in)
South Asian	≥90 cm (35.4 in)	≥80 cm (31.5 in)
Chinese	≥90 cm (35.4 in)	≥80 cm (31.5 in)
Japanese	≥85 cm (33.5 in)	≥90 cm (35.4 in)

Current NCEP ATP-III criteria

>102 cm (>40 in) in men, >88 cm (>35 in) in women

NCEP 2002; International Diabetes Federation (2005)

Not all fat is the same !!!!!!

Pear and Apple

Elevated Waist Circumference:

A Key Feature in Patients with the Metabolic Syndrome

This is the "at risk" patient I'm talking about

Intra-abdominal (visceral) fat: The dangerous inner fat!

AT: adipose tissue

Back

Central obesity: a driving force for cardiovascular disease & diabetes

"Balzac" by Rodin

Front

Back

Visceral adipose tissue is associated with metabolic risk

Weight	110 kg	110kg
Waist (cm)	92.0	104.5
CT surface (cm ²)	92.7	149.4
Ultrasound (cm)	6.2	8.4

Genetic factors and Diabetes

- Genetic factors
 - Increases risk in Ethnic
 - Born with increased risk

- Urbanisation
 - Adopting a western life style/diet
- Obesity
 - Rising frequency in conjunction with genetic risk

Key differences in Diabetes in Ethnic Populations*

- Age of onset: Younger in general
- Family history: Strong genetic predisposition
- BMI and Diabetes Risk: lower BMI cut of limits
- Risk of complications:
 - Microvascular: Higher risks
 - Macro vascular: Higher risks
- Risk of Cardiovascular disease: Greater morbidity & mortality

^{*}Speakers own personal experience

BMI & Diabetes in Asian / Black

Obesity: rates are lower if using convential BMI cut of limits

- E.g. Indian Men 14%: women 20%
- Bangladeshi Men 6%: women 17%
- Caucasian Men 23%: women 23%
- BMI cut-off points 25 kg/m² (overweight) and 30 kg/m² (obesity)

South Asian groups

- BMI cut-off points 23 kg/m² (overweight) and 27.5 kg/m² (obesity) (NICE)
- Central obesity/ adiposity/intra-abdominal fat
- Insulin resistance
- Treatments with ethnic specific BMI: GLP-1 The association between body mass index and health-related quality of life:

influence of ethnicity on this relationship. McDonough C(1), Dunkley AJ, Aujla N, Morris D, Davies MJ, Khunti K. Diabetes Obes Metab. 2013 15:342-8.

Table 5 | Adjusted hazard ratios (95% CI) for cardiovascular disease for QRISK2 model in derivation cohort (see figure 1 for effect of age on relevant hazard ratios where there are age interactions)

	Women	Men
White /not recorded		
White/not recorded	1	1
Indian	1.43 (1.24 to 1.65)	1.45 (1.29 to 1.63)
Pakistani	1.80 (1.5 to 2.17)	1.97 (1.70 to 2.29)
Bangladeshi	1.35 (1.06 to 1.72)	1.67 (1.40 to 2.01)
Other Asian	1.15 (0.86 to 1.54)	1.37 (1.09 to 1.72)
Black Caribbean	1.08 (0.94 to 1.24)	0.62 (0.53 to 0.73)
Black African	0.58 (0.42 to 0.82)	0.63 (0.47 to 0.85)
Chinese	0.69 (0.44 to 1.10)	0.51 (0.32 to 0.83)
Other	1.04 (0.85 to 1.28)	0.91 (0.75 to 1.10)
Age (10% increase)*	1.66 (1.65 to 1.68)	1.59 (1.58 to 1.60)
BMI (5 unit increase)	1.08 (1.06 to 1.10)	1.09 (1.07 to 1.11)
Townsend score (5 unit increase)	1.37 (1.34 to 1.40)	1.18 (1.16 to 1.20)
Systolic blood pressure (mm Hg) (20 unit increase)	1.20 (1.18 to 1.22)	1.19 (1.17 to 1.20)
Cholesterol/HDL ratio	1.17 (1.16 to 1.18)	1.19 (1.18 to 1.20)
Family history coronary heart disease	1.99 (1.92 to 2.05)	2.14 (2.08 to 2.20)
Current smoker	1.80 (1.75 to 1.86)	1.65 (1.60 to 1.70)
Treated hypertension	1.54 (1.45 to 1.63)	1.68 (1.60 to 1.77)
Type 2 diabetes	2.54 (2.33 to 2.77)	2.20 (2.06 to 2.35)
Rheumatoid arthritis	1.50 (1.39 to 1.61)	1.38 (1.25 to 1.52)
Atrial fibrillation	3.06 (2.39 to 3.93)	2.40 (2.07 to 2.79)
- L !		

Renal disease

J Hippisley Cox et al, BMJ 2008 336a 332

Risk Factors Identified in Men in the Health Survey for England, 1999

Standardised risk ratio	Indian	Pakistani	Bangladeshi	General population
Current smoker	0.78	0.90	1.57	1.0
BMI >30 kg/m ²	0.66	0.74	0.32	1.0
WHR >0.95 (men)	1.48	1.54	1.33	1.0
High blood pressure (≥140/90 mmHg)	1.03	0.89	0.74	1.0
Physical activity*	0.86	0.70	0.55	1.0
HDL-C <1.0 mmol/L	1.11	1.67	2.68	1.0
Triglycerides ≥1.6 mmol/L	2.56	2.29	1.63	1.0
LDL-C ≥ 3.0 mmol/L	1.63	1.34	[0.90]	1.0
Total cholesterol ≥5.0 mmol/L	0.99	0.86	0.90	1.0

^{1.}Boreham, R; Erens, B; Falaschetti, E; Hirani, V and Primatesta, P (1999) <u>Cardiovascular risk factors.</u> In: Primatesta, P and Erens, B, (eds.) **Health Survey** for **England** 1998. The Stationery Office: London.

Barriers to diabetes care in ethnic populations

Barriers to diabetes care in ethnic populations

- Cultural barriers
- Language barriers
- Health beliefs / Poor Knowledge & understanding
- 1st generation immigrants vs 2nd generation
- Socioeconomic barriers
- Dietary habits poorly understood
- Exercise
- Medication belief / self medicate/ fear medication e.g. insulin
- Asymptomatic disease and harm

Barriers to physical activity in East London Bangladeshis

BIPOD study

- Physical activity and importance of diet widely acknowledged as important
- Muslim prayer was frequently cited as sufficient to sustain health
- Desire to exercise versus fear of social disapproval
- Social expectation of 'special foods'
- Wife's role as a provider of 'tasty meals' versus the guardian of the families health

Knowledge of diabetes:

Poorer knowledge of diabetes related issues amongst SAs

T Choudhury et al. (Personal communication 2014).

How to address these barriers

- Cultural awareness in general by HCP
- Ramadan education
- Cultural appropriate educational resources
- Family /community leaders partnership
- Funding research in ethnic populations

APNEE SEHAT

- Community based interventions in places of worship, community centres etc.
- Develop visuals Posters, DVD

EVALUATION

- Appropriate Role Model/Health Champions and Language of Delivery
- Simple and Visual
- Practical
- Whole family/Community approach
- Community & Religious leaders support
- 5 national awards

UKADS

- Test the hypothesis that structured, culturally sensitive care for type 2 diabetes in SAs can improve CV risk
- Pilot: 361 patients with T2D
- 6 GP practices in Coventry and B'ham
- Enhanced care Asian linkworker contacted pts to encourage clinic attendance, organise educational sessions, and attended with pts to clinics to facilitate understanding and compliance

UKADS

- Saw practice nurses, with input from DSNs worked to treatment protocols for BP, lipids and glycaemia
- Conventional same protocols / targets, but no additional support

	Intervention	Control	Р
SBP	-6.69	-2.11	0.035
DBP	-3.14	+0.28	0.003
Chol	-0.51	-0.12	0.005
HbA1c	-0.23	-0.20	0.866

Exercise & Physical activity

What should I be aware of?

Exercise & Physical activity

- South Asians oxidise less fat during exercise compared to Caucasians
- More sedentary life styles in general
- Beliefs of exercise in women & men in ethnic populations e.g. mixed sex activity etc.
- SA/Black Children: less physical active compared to Caucasians
- NEED for cultural specific advise activity

Khunti et al, Diabetes UK and SAHF recommendations on research priorities for UK, Joint Report 2009.

Glucose control in Ethnic patients

- Glycaemic control: some reports suggest worse control in ethnic populations
 - Poor concordance
 - Clinical inertia
 - Greater deterioration in insulin sensitivity over time
- Response to Pharmacotherapy
 - no difference in response to therapy
 - Some differences concerns

Glycaemic control specific issues*

- Metformin
- Sulphonylurea
- Pioglitazone
- DPP-4 inhibitors
- SGLT-2 inhibitors
- GLP-1 receptor agonists
- Insulins

^{*}Speakers own personal experience

Glycaemic control and specific risks*

- **Metformin** Vitamin B12 –deficiency Vegans/vegetarian
 - insulin sensitivity beneficial
- Sulphonylurea fasting & risks, hypoglycaemia, weight gain.
- Pioglitazone improves insulin sensitivity, weight gain, fracture risk
- DPP-4 inhibitors low risk of hypos and weight benefit, fasting beneficial
- SGLT-2 Weight loss, fasting beneficial, volume depletion(fasting),
- GLP-1 receptor agonists Weight loss, low hypo risk, BMI cut off
- Insulins fasting and risks, risks with dietary habits, weight gain and stigma with insulin greater in black/Asian

^{*}Speakers own personal experience

Dietary habits

- Extremely heterogeneous in ethnic populations
 - Typical high carb (bread, rice), Fat (butter, Ghee, oil, Salt (higher intake)
 - Overcook vegetables destroys nutrition
 - Food in fasting rituals, festivals and social role in SA / Black population
- Timing of meals
- Religious rituals: fasting / feasting impact on glycaemic control
- Lower intake of fresh fruits / vegetables
- Low level of vitamin D/ Vitamin C dietary influence

Khunti et al, Diabetes UK and SAHF recommendations on research priorities for UK, Joint Report 2009.

Summary*

- High prevalence of DM in ethnic groups
- Central obesity more prevalent
- High risk of complications, mortality, morbidity
- Medication as effective
- Barriers to treatment adherence can be addressed to help this vulnerable group