AIDS-Related Cancers: What's New with the Old

Alexandra M. Levine, M.D., M.A.C.P. Norman & Melinda Payson Professor of Medicine Professor of Hematology/HCT City of Hope National Medical Center

Distinguished Professor of Medicine, Emeritus Keck School of Medicine University of Southern California

HIV Management Hepatitis Management THE NEW YORK COURSE

May 11 – 12, 2017

Infectious organisms can cause cancer

14th Report on Carcinogens Department of Health & Human Services, USA Released November 3, 2016

Newly reviewed substances				
Substance	Listing Status	Description		
Human immunodeficiency virus type 1 (HIV-1)	Known to be a human carcinogen	Virus		
Human T-cell lymphotropic virus type (HTLV-1)	Known to be a human carcinogen	Virus		
Epstein-Barr virus (EBV)	Known to be a human carcinogen	Virus		
Kaposi's sarcoma-associated human herpesvirus / HHV8	Known to be a human carcinogen	Virus		
Merkel cell polyomavirus (MCV)	Known to be a human carcinogen	Virus		
Trichloroethylene (TCE)	Known to be a human carcinogen	Industrial solvent		
Cobalt and cobalt compounds that release cobalt ions in vivo	Reasonably anticipated to be a human carcinogen	A metal and its compounds		

International Agency for Research in Cancer (IARC) defines 10 organisms as well established carcinogenic agents in humans, and one (HIV-1) as a co-factor

Organism	Attributable cancer(s)		
Opisthorchis and Clonorchis	Bile duct cancer		
Schistosoma haematobium	Bladder cancer		
H. pylori	Non-cardiac gastric cancer Gastric cardiac cancer	Gastric lymphoma	
HTLV-1	Adult T-cell leukemia / lymphoma	I	
* HBV	Liver cancer		
* HCV	Liver cancer, lymphoma		
* HPV	Cervical cancer Penile cancer Vulvar cancer	Vaginal cancer Anal cancer Oropharyngeal cancer	
* EBV	Hodgkin's NHL, Burkitt Nasopharyngeal cancer	NK / T lymphoma Squamous cell cancer of conjunctiva	
* HHV8	Kaposi's sarcoma Castleman's related lymphoma		

* HIV-I is a co-factor to \uparrow risk.

Epidemiology: Infection-Attributable Cancers

- In 2012, 14 million new cancer cases, globally
 - 15.4% attributable to organisms
 - < 5% in USA, Canada, Australia, New Zealand, some Western & Northern European countries
 - Overall, 25% of cancers in resource-poor regions
 - Over 50% in sub-Saharan Malawai and Mozambique
- 92% of these cancers due to *H. pylori*, HPV, HBV, HCV
- These figures likely under-represent true incidence
- Must concentrate on prevention:
 - Vaccines (HPV, HBV)
 - Screen and treat strategies (HPV)
 - Anti-infectives (*H. pylori*, HCV, HIV)

EPIDEMIOLOGY MALIGNANCIES INCREASED AMONG HIV-INFECTED PERSONS

AIDS-Defining

Kaposi's Sarcoma

High-Grade B-Cell Lymphoma

Cervical Cancer

Non- AIDS-Defining

HPV-Related Anal cancer Oropharyngeal cancer

HHV-8 Related Castleman's

EBV-Related Hodgkin's lymphoma

HCV / HBV-Related Liver cancer

Lung Cancer

Common causes of death in HIV-infected persons D:A:D Study: 1999 – 2011 (N = 3,909)

Ref: Smith CJ, et al. Lancet 2014; 384:241.

Trends in incidence, survival and incidence-based mortality (IBM) among HIV-positive and HIV-negative lymphoma patients USA: 1990 – 2012, SEER Data

Ref: Howlander N, et al. CA EPI Biomarkers & Prev 2016; July 14; doi.10.1158/1055-9965.EPI-16-0273.

Changes in clinical context of KS and NHL among HIV-infected patients in the USA

- KS or NHL diagnosed from 1996 2011
- Derived from 8 clinical cohorts

NHL	KS
3.4 fold \uparrow	710 fold \uparrow
3.1 fold ↑	430 fold \uparrow
2.9 fold ↑	430 fold ↑
	 NHL 3.4 fold ↑ 3.1 fold ↑ 2.9 fold ↑

1 Risk of ADC's continues

Ref: Yanik EL, et al: JCO 2016.

Infection-related vs. infection-unrelated cancers among HIV-infected persons Effect of aging over time

* Incidence of both infection-related AND -unrelated cancers increased with age.

Factors associated with
infection-related cancersFactors associated with non-
infection-associated cancersPts < 50</td>Low CD4sLow CD4sPts \geq 50Low CD4sSmoking

Ref: Shepherd L, et al (EuroSIDA): HIV Med 2016; 17:590-600.

Forecast crude incidence rates of infection-related and infection-unrelated cancers (per 1000 PY's) in 15,648 patients recruited before 2001 (EuroSIDA)

Ref: Shepherd L, et al. HIV Med 2016; 17:590-600.

Cumulative incidence of AIDS lymphoma among ART-naive (F/U = 13 mos) vs. ART-treated patients (F/U = 50 mos)

HBV+ = 1,339 pts HCV+ = 7,507 pts

Ref: Wang Q, et al (COHERE/Europe). Ann Intern Med 2016: Oct 18. doi:10.7326/M16-0240.

Predictors of AIDS Lymphoma

- Low CD4 cells (< 200)
- **Uncontrolled HIV replication**
- Serum free Ig light chains
- Serum cytokines / chemokines

sCD27	sCD23
CXCL13	IL-6

↑ miR 21 in PB B cells (vs HIV+ controls or HIV- NHL)

AIDS-Related Lymphoma

Treatment

Treatment factors affecting outcomes in AIDS-related lymphoma

Pooled data from 1,546 patients from 19 prospective clinical trials

Statistically significant results

	CR	PFS	Overall survival
Concomitant ART	\uparrow		Trend ↑
Rituximab use	\uparrow	\uparrow	\uparrow
Infusional EPOCH			↑ in DLBCL
Dose-intensive vs CHOP Rx	\uparrow		\uparrow

Ref: Barta SK, et al. Blood 2013; 122:3251-62.

Dose-Adjusted EPOCH in AIDS Lymphoma Continuous Infusion over 96 Hours NO ANTI-HIV Rx Until End of 6th Cycle of Chemo

Drug	Dose	Day
Etoposide	50 mg/m²/d	1-4
Vincristine	0.4 mg/m ² /d	1-4
Doxorubicin	10 mg/m²/d	1-4
Prednisone	60 mg/m²/d po	1-5
Cyclophosphomide		
< 100 CD4	187 mg/m ²	5
> 100 CD4	375 mg/m ²	6
G-CSF		6 to ANC
		> 5000

Ref: Little RF, et al: Blood 2003; 101:4653-59.

Dose-Adjusted EPOCH in AIDS NHL Results

	Total	CD4 < 100	CD4 > 100
Number	39	16	23
Median Age	40 yr		
Stage III/IV	67%		
IPI – 2/3 (age adjusted)	59%		
Complete Remission	74%	56%	87%

Ref: Little RF, et al: Blood 2003; 101:4653-59.

Disease-Free Survival at 53 Months in 29 Patients in CR after da-EPOCH

Ref: Little RF, Pittaluga S, Grant N: Blood 2003; 101:4653.

SHORT COURSE (SC) EPOCH-RR in AIDS DLBCL

Ref: Dunleavy K, et al. Blood 2010; 115:3017-24.

Results: Short-course R-EPOCH-R in AIDS DLBCL Median F/U = 5 years

PATIENTS N = 33; median age = 42; 76% = High-Int or Hi IPI

 TREATMENT
 Rituximab 375/n² day 1 and 5

 IT MTX 12 mg day 1+5 of cycle #3; repeat q 3 weeks x 6 total doses (cycles 3 – 5), regardless of systemic Rx

 PJP and MAC prophylaxis

OUTCOME79% needed only 3 cycles

PFS = 84%

OS = 68%

Only predictor of outcome = GC vs non-GC

GC non GC PFS 95% 44%

Ref: Dunleavy K, et al. Blood 2010; 115:3017-3024.

Outcome – AIDS DLBCL s/p SC EPOCH-RR (N = 33; Median F/U = 5 yrs)

Ref: Dunleavy K, et al. Blood 2010; 115:3017-24.

HIV Parameters: SC EPOCH-RR in HIV DLBCL

Ref: Dunleavy K, et al. Blood 2010; 115:3017-24.

Burkitt Lymphoma Treatment Strategies

- Multiple agents, high doses, in alternating cycles
- Ex: CODOX-M; CODOX-M IVAC
- Good efficacy but high toxicity

NCI 9177 - Eligibility

- Untreated patients
- Age \geq 18 years
- Histologically confirmed Burkitt Lymphoma
- HIV-negative and -positive
- Low-risk and high-risk groups

Risk-Adapted DA-EPOCH-R in BL

Risk-Adapted DA-EPOCH-R in BL

Characteristics*	All	LR	HR
Ν	88	11	77
Median Age (range) ≥ 40 Y ≥ 60 Y	46y (18-78) 57% 25%	38y (19-62) 45% 9%	47y (18-78) 58% 27%
Male Sex	82%	64%	84%
Stage III or IV	64%	0	73%
High LDH	56%	0	64%
ECOG ≥ 2	18%	0	21%
Extranodal disease	50%	23%	58%
CNS disease	13%	0	15%
HIV-positive	24%	0	27%

*From 24 sites

Progression-Free Survival

Ref: Dunleavy K, et al. (AMC-086 & CTSU #9177) ASH, 12/2015.

Overall Survival

Ref: Dunleavy K, et al. (AMC-086 & CTSU #9177) ASH, 12/2015.

Outcome by Risk Group - Low vs High

OVERALL SURVIVAL

Median follow-up 25 months

Ref: Dunleavy K, et al. (AMC-086 & CTSU #9177) ASH, 12/2015.

Outcome by HIV Status

Median follow-up 25 months

Toxicity

- 3 on-treatment infectious deaths in HR arm (Treatment-related mortality = 3.4%)
 - 72 y male: cycle 1
 - 59 y male: cycle 1
 - 52 y female: cycle 4
- Administered as outpatient where feasible

AIDS-Related NHL Options at Relapse

Autologous hematopoietic cell transplant (SCT) in patients with relapsed or persistent AIDS lymphoma Prospective study of BMT-Clinical Trials Network (BMT-CTN) and AIDS Malignancy Consortium (AMC)

ISSUES ADDRESSED

Salvage chemo followed by SCT results in long-term disease-free survival (or "cure") in approximately 60 - 70% of HIV UNinfected patients

WHAT IS OUTCOME IN HIV-INFECTED?

- Survival
- Time to progression
- Progression-free survival
- Mortality from SCT
- Time to heme recovery

SPECIAL CONSIDERATIONS

- Conditioning regimen (BEAM)
- How to choose ART
- When to stop/start ART
- Are CD34 cells normally mobilized?
- Immunologic recovery
- HIV virologic changes
- Unique toxicities or adverse events

Autologous stem cell transplant in 40 HIV-infected patients BMT-CTN 0803 + AMC 071 Trial Method of ART use during transplant

- Review ART regimen before treatment for possible interactions
 - Ritonavir-boosted PIs: Problematic as strong CYP 3A4 inducers.
 Stop prior to conditioning regimen.
 - Do not use AZT: myelosuppressive
 - Stop efavirenz > 2 weeks from treatment: Long T-1/2 washout
 - Integrase inhibitors effective, better tolerated than PIs or non-NUC RTIs (Torres HA, et al. Clin Microb Infect 2014; 20:672-79)
- ART uniformly stopped at start of conditioning and resumed
 <u>></u> 7 days
 post BEAM, or after recovery from Rx-related GI toxicity
 - Median duration ART interruption = 15.5 days (11 40)

Overall and progression-free survival in 40 patients s/p AuSCT for ARL or HIV- Hodgkins (BMT / CTN 083 + AMC 071 Trial)

Survival and progression-free survival in 40 HIVinfected patients on BMT / CTN 0803 + AMC 071 vs 151 matched HIV-negative controls from CIBMTR Registry

Autologous progenitor cell transplant in 40 HIV-infected patients with relapsed or persistent lymphoma BMT-CTN 0803 +AMC 071 Trial

Toxicities and Mortality

6				
Into	CTI	\mathbf{O}	ne	
	UU			

- \rightarrow 22 pts (55%) had 57 infections in yr post-Tx
 - 11 pts (27%) had severe infections
 - One death due to infection (fungal)
 - No case of *Pneumocystis jiroveci*

Organ Toxicities $\longrightarrow \bullet$ Cardiac arrest in one (death)

- Grade 4 events in 3 pts; Grade 3 in 10
- Mortality ------> 5.2% TRM at one year
 - Cardiac arrest in one
 - Fungal infection in one

 \longrightarrow 3 deaths secondary to NHL (yr 1); one in year 2

CD4 cell reconstitution after AuSCT BMT-CTN 0803 + AMC 071 Trial

HIV viral load over time, s/p AuSCT in BMT-CTN 0803 + AMC 071 Trial

Time	Nondete	ectable (%)	Detectable	Median VL in Detectables
Baseline	32	(80%)	8	80
Day 100	19	(70%)	8	298
Day 180	20	(69%)	9	84
Day 365	19	(83%)	4	97
Day 730	21	(80%)	5	130

WHAT'S NEW IN KAPOSI'S SARCOMA?

HHV8 (KSHV)-Related Diseases

Ref: Cesarman E: NEJM 2003; 349:1107-9.

Epidemiology of Kaposi's Sarcoma <u>USUAL SETTINGS</u>

ENDEMIC KS

- Africa
- All population groups affected, including children

"CLASSIC" KS

- Mediterranean Europe
- Elderly men
- Rather indolent, often confined to feet and legs

TRANSPLANT-RELATED KS

- latrogenic immunosuppression
- Incidence = 400-500 times expected
- Treatment = stop immunosuppression

AIDS-RELATED KS

• Primarily affects gays/bisexual men

HHV8 / KSHV ISOLATED IN ALL TYPES

TREATMENT OPTIONS: AIDS-RELATED KAPOSI'S SARCOMA

Effect of HAART Alone on KS

N = 19 ACTG Criteria of Response

	Month 6	Month 12	Month 18	Month 24	
Complete Response	11%	32%	42%	58%	
Overall Response (CR & PR)	64%	69%	79%	74%	

Ref: Dupont C, et al: AIDS 14:987-993, 2000.

Local Therapy of KS

- Surgical excision
- Laser therapy
- Topical 9-cis retinoic acid
- Radiotherapy electron beam, limited

Commonly used therapies for advanced AIDS Kaposi's Sarcoma

Therapy	Overall Response	CR	Ref
Antiretrovirals ART	64% at month 6 74% at month 24	11% 58%	AIDS 2000; 14:987
Pegylated liposomal doxorubicin 20 mg/m² q 2 wks IV	46%	1%	JCO 1998; 16:2445
Paclitaxel 135 mg/m² IV q 3 wks	65%	0	Lancet 1995; 346:26
100 mg/m² IV q 2 wks	56%	4%	Cancer 2002; 95:142

Unmet Need for Novel Agent(s) in KS

- No treatment is yet curative
- No current oral Rx, other than ART
- Chronic use of chemotherapy (doxorubicin, paclitaxel) poorly tolerated
- Cumulative anthracycline (doxorubicin) causes cardiotoxicity

Pomalidomide: Immune Response Modifier

Ref: Polizzoto MN, et al (NCI) JCO 2016; 34:4125-31.

Pomalidomide in 22 pts with Kaposi's Sarcoma Patient Characteristics

e

	HIV-Infected	HIV-Negativ
Number	15	7
Median age	49	61
Median HIV VL	< 50 in all	
Median CD4	378 (135 – 732)	
Advanced T1 Stage	67%	100%
KS-related edema	100%	100%
> 50 KS lesions	53%	71%
Prior KS Rx	87%	86%
Prior chemo	53%	29%
Prior thalidomide or lenalidomide	7%	14%

Ref: Polizzoto MN, et al (NCI). JCO 2016; 34:4125-31.

Oral Pomalidomide in Kaposi's Sarcoma 5 mg qd x 21 every 28 days + ASA 81 mg daily RESPONSE

	Ν	Overall Response	Complete Response
All patients	22	73%	18%
HIV-positive	15	60%	20%
HIV-negative	7	100%	14%
		\bigvee	

MEDIAN TIME TO RESPONSE

HIV-pos = 8 weeks (4 - 32)HIV-neg = 4 weeks (4 - 36)

Ref: Polizzoto MN, et al (NCI). JCO 2016; 34:4125-31.

Responses to Pomalidomide in 15 HIV+ and 7 HIV- KS patients

Ref: Polizzoto MN, et al (NCI). JCO 2016; 34:4125-31.

Pomalidomide for symptomatic KS in 51 HIV-positive & 7 HIV-negative patients

Dose

5 mg orally / day + ASA, 81 mg daily
 No dose-limiting toxicity

Toxicity

Grade 3 – 4 neutropenia 10 pts (45%) and 13% of cycles

only grade 4 = 2 pts with benign ethnic neutropenia

One grade 3 infection (pneumonia)

QOL No decrease; improvements at 3 mos & study end

 $\frac{\text{CD4} / \text{CD8 cells}}{- \text{CD8 cells at week 4 (+ 108) and 8 (+ 40)}}$

Virology

No change in HIV-1 VL
 KSHV / HHV8 = 1 at week 4 & in 10 pts. Back to baseline, week 8

Ref: Polizzoto MN, et al. JCO 2016; 34:4125-31.

HIV Management Hepatitis Management THE NEW YORK COURSE

