

Managing After the Cure:

Hepatocellular Carcinoma, Fatty Liver Disease, and More

Robert S. Brown, Jr., MD, MPH Gladys and Roland Harriman Professor of Medicine Vice Chair, Transitions of Care Clinical Chief, Division of Gastroenterology & Hepatology Weill Cornell Medical College

General Outcomes with AASLD-IDSA Recommended HCV Regimens for Genotype 1 Patients

	SVR12 Rate (%)	Relapse Rate (%)	Discontinuations Due to Adverse Events (%)
Treatment-naïve No cirrhosis Compensated cirrhosis	97-99 88-100	0-3 <1-6	0-1 0-3
PegIFN/RBV-experienced No cirrhosis Compensated cirrhosis	95-100 79-99	0-5 <1-19	0-3 0-3
Decompensated cirrhosis	81-92	8	3-17

AASLD-IDSA recommended regimens:

Treatment-naïve: sofosbuvir/velpatasvir, ledipasvir/sofosbuvir, elbasvir/grazoprevir, ombitasvir/paritaprevir/r + dasabuvir <u>+</u> RBV, simeprevir + sofosbuvir, and daclatasvir + sofosbuvir.

PegIFN/RBV-experienced: sofosbuvir/velpatasvir, ledipasvir/sofosbuvir <u>+</u> RBV, elbasvir/grazoprevir, ombitasvir/paritaprevir/r + dasabuvir <u>+</u> RBV, simeprevir + sofosbuvir, and daclatasvir + sofosbuvir.

Decompensated cirrhosis (pre-liver transplantation: sofosbuvir/velpatasvir; ledipasvir/sofosbuvir <u>+</u> RBV, daclatasvir + sofosbuvir <u>+</u> RBV).

Weill Cornell Medicine

AASLD-IDSA. http://www.hcvguidelines.org/full-report-view. Version September 16, 2016.

SVR Is Great!

- SVR12 = Durable virologic cure. Long-term risk of relapse: ~0.1%
- Improves long-term clinical outcomes
 - Stabilizes/improves liver fibrosis/cirrhosis
 - Lower liver-related and all-cause mortality
 - Decreased HCC
- Improves quality of life
- Decreases infectivity/risk of spread in high-risk populations

SVR Does Not Do Everything

- Does not prevent reinfection—No immunity
- Does not eliminate HCC risk in advanced fibrosis/cirrhosis
- Does not prevent other liver diseases from progressing—Alcoholic and nonalcoholic fatty liver, others

So all patients need post-SVR care and monitoring

Long-Term Follow-up of HCV Patients Treated with DAA Regimens

- Prospective, observational cohorts
 - SVR registry: SVR12 achievers (n = 5433)

Median follow-up: 71 weeks

 Sequence registry: virologic failure patients (n = 536)

Median follow-up: 44 weeks

- Maintained SVR: 99.7% (5,414/5,433)
 - Late virologic relapse: 0.1%
 - HCV reinfection: 0.2%
- Low rates of clinical disease progression
- Incidence of HCC
 - SVR registry: 0.3% (16/5433)
 - Sequence registry: 0.9% (5/536)

Registry Characteristics

	SVR (n = 5433)	Sequence (n = 563)
Median age (years)	54	54
Male (%)	63	78
White (%)	85	84
Cirrhotics (%)	20	22
HCV genotype (%) 1 2 3 4 5 6	67 10 20 3 <1 <1	62 5 32 <1 <1 0

Histologic Improvement of Fibrosis in HCV Patients with SVR24 to INF Therapy

- Retrospective cohort study (n=593)
 - Paired biopsy (1987-1997)
 - Median 3.7 years apart
 - IFN started within 6 months of initial biopsy
- Baseline fibrosis
 - F0-F1: 33%
 - F2-F3: 57%
 - F4: 10%
- Fibrosis score may remain the same over several years even though gradual regression is demonstrated in liver tissue specimens

0.4 0.3 0.2 0.1 0.1 0.02

Fibrosis Progression/Regression

(*P* < 0.001)

SVR24

(n = 183)

-0.4

Untreated

(n = 106)

No SVR24

(n = 304)

HALT-C: Impact of Achieving SVR on Mortality and Liver-Related Outcomes

All-cause Death or Transplantation

Liver-related Outcomes

Prospective, randomized trial of previous IFN-based treatment failures with advanced bridging fibrosis (Ishak fibrosis stages 3-4) or cirrhosis (stages 5-6) via biopsy. *P <0.05 and [†]P <0.001 vs nonresponders.

Weill Cornell Medicine

Morgan TR, et al. *Hepatology.* 2010;52:833-844.

5-Year Risk of All-Cause Mortality: SVR24 vs Non-SVR24

- Significant survival benefit with achieving SVR24
 - Adjusted hazard ratios for mortality: SVR vs non-SVR (95% CI)

General: 0.33 (0.23-0.46)

Cirrhotic: 0.26 (0.18-0.37)

HCV/HIV: 0.21 (0.10-0.45)

- Research need
 - Prospective data with all-oral, IFN-free DAA regimens

5-Year All-Cause Mortality

Weill Cornell Medicine

Simmons B, et al. Clin Infect Dis. 2015;61:730-740.

UK Expanded Access Program: Treatment of HCV Patients with Advanced Cirrhosis

EAP: expanded access program.

Baseline demographics were similar among those initially treated and not treated for HCV.

Treatments: ledipasvir/sofosbuvir + RBV or daclatasvir + sofosbuvir + RBV for 12 weeks.

Outcomes: clinical events during and after treatment.

Short term: months 0-6 (SVR [3 months during and 3 months post-treatment] vs untreated patients). Longer term: months 6-15.

Weill Cornell Medicine

Cheung MC, et al. J Hepatol. 2016;65:741-717.

UK Expanded Access Program: Treatment of Decompensated HCV Patients

- Benefits seen in the treated group during the first 6 months
 - Significant reduction of liver-related events (*P* < 0.05)
- Over 15-month follow-up, adverse events decreased in SVR24 patients
- Predicting long-term benefits
 - Early MELD change was not predictive of long-term outcome
 - Achieving SVR24 in Child-Pugh B patients led to improvement in adverse events for the majority
 - Only a minority of Child-Pugh C patients derived long-term benefits

	First 6 Months		Over 15 Months
	All Treated (n=406)	Untreated (n=261)	Treated With SVR24 (n=317)
Deaths (%)	3	5	3
Decompensation (%)	18*	28	5
HCC (%)	4	4	2
Liver transplant (%)	7	4	4

Adverse Events

**P* <0.05.

Weill Cornell Medicine

Cheung MC, et al. J Hepatol. 2016;65:741-717.

VA HCV Clinical Case Registry (1999-2009): Incidence and Predictors of HCC after SVR

- Retrospective cohort study (n = 10,738)
- Incidence of HCC (per 1,000 patient-years)
 - With SVR: 3.27 (0.327%/year)
 - No SVR: 13.2 (1.32%/year)
- SVR cohort (no HCC, pegIFN + RBV)
 - Mean age (53 years; 12% >60 years of age), male (95%), black (13%), non-Hispanic white (64%), Hispanic (3%)
 - New HCC cases post SVR (n = 100 during 30,562 person-years, median 2.8 years after SVR)
- Significant predictors of HCC after SVR
 - Cirrhosis after SVR, older age (>55 years), diabetes, HCV genotype 3 (vs 1)

Weill Cornell Medicine

Risk of HCC Remains after SVR in HCV Patients with Advanced Hepatic Fibrosis

- Meta-analysis (n = 1000)
 - 10 cohorts, individual patient data
 - SVR with IFN-based therapy
 - Bridging fibrosis or cirrhosis
 - No HIV or HBV coinfection
- 51 events of HCC over 5.1 years of follow-up
- Patients with HCV-induced cirrhosis who achieve SVR remain at risk for HCC
- Risk increased with age, severity of liver disease, and presence of diabetes mellitus

12.2% 14 Age Group <45 years</p> 12 45 to 60 years >60 years 9.7% 10 Rate (%) 8 P = 0.0066 4 2.6% 2 0 2 7 3 5 6 8 4 Years After SVR

Cumulative HCC by Age Group

Weill Cornell Medicine

van der Meer AJ, et al. *Hepatology*. 2013;58(suppl 1):280A. Abstract

Liver-Related Morbidity and Mortality in Patients Who Achieved SVR

- Many studies show there is a nonzero risk of hepatocarcinogenesis after achieving SVR
 - Cumulative incidence after SVR
 - 5 years: 2.3% to 8.8%

10 years: 3.1% and 11.1%

- Risk in noncirrhotic patients requires further long-term follow-up, including patients in Western countries
- Risk remains long after HCV is cleared
 - One study found 50% of HCC cases developed <u>></u>7 years after SVR
- HCC risk may be multifactorial
 - Long-standing exposure to this potentially carcinogenic virus may be a primary factor for liver cancer during chronic HCV infection

 Li DK, et al. Cancer. 2015;121:2874-2882.

 Weill Cornell Medicine
 D'Amrosio R, et al. Int J Mol Sci. 2015;16:19698-19712.

Pre-SVR Risk Factors Associated with Development of HCC in SVR Patients

- The most well-established risk factor is advanced fibrosis or cirrhosis
- Other risk factors identified
 - Diabetes mellitus
 - Older age
 - Male gender
 - Alcohol use
- Management of comorbidities once HCV is cured
 - May play an important role in minimizing risk of HCC development
 - Need to work up and manage abnormal LFTs, NAFLD, ETOH

2011 AASLD Guidelines for HCC Surveillance in Patients with Chronic HCV

- Surveillance is deemed cost-effective if the expected HCC risk exceeds 1.5% per year
- AFP determination lacks adequate sensitivity and specificity for effective surveillance (and for diagnosis)
- HCC surveillance has to be based on ultrasound examination
- Recommended screening interval is 6 months
 - Diagnosis of HCC should be based on imaging techniques and/or biopsy

Challenges for HCC Surveillance in HCV Patients after Achieving SVR

- Surveillance is deemed cost-effective if the expected HCC risk exceeds 1.5% per year
 - A rate higher than most estimates for SVR patients
 - Population of SVR patients will expand with all-oral, IFN-free, DAA therapy
 - 12% of new HCV-related HCC cases are diagnosed via screening in the US
 - <20% of patients with cirrhosis who develop HCC have undergone regular surveillance
- Unclear whether or not to continue screening patients who achieve SVR
 - Risk of disease progression is reduced but not eliminated
 - No direct prospective comparison of regular post-SVR screening and usual care

Prognosis of HCC Based on Surveillance Status in HCV Patients Achieving SVR24

- Retrospective, multi-center study (n = 2152; 1998-2014)
 - HCC patients after SVR24 with IFN-based therapy (3.9%, 83/2152)

Mean time between SVR24 and HCC diagnosis: 6.7 years

- No HCC surveillance
 - Lower survival rates
 - More advanced disease at detection

Larger tumors

Multiple HCC and portal vein invasion

BCLC class C or D (40%)

TNM stage III or IV (60%)

HCC surveillance: every 3 or 6 months (no difference in survival based on surveillance interval).

Weill Cornell Medicine

Toyoda H, et al. *Hepatol Res.* 2016;46:734-742.

Achieving SVR Does Not Protect Against HCV Reinfection/Recurrence

- Given the lack of protective immunity
 - Ongoing risk behaviors can lead to reinfection after successful treatment
 - Immunocompromised patients may be at risk of HCV recurrence
- Reinfection may compromise long-term benefits of treatment for patients with ongoing risk behaviors

Risk of HCV Recurrence with HCV after Achieving SVR

- Meta-analysis of HCV recurrence after SVR (n = 9049; 1990-2015)
 - Adults with SVR12 or SVR24 with IFN-based therapy
 - <u>>6 months follow-up post-SVR</u>
 - Not included: recurrence after spontaneous clearance, liver transplant recipients
- HCV recurrence
 - Overall and due to late relapse or reinfection
- HCV monoinfection
 - Low-risk population (n = 43 studies, 7,969 patients)
 - High-risk population (n = 14 studies, 771 patients)
- HCV/HIV (n = 4 studies, 309 patients)

Risk factors for reinfection: current or former PWID, imprisonment, MSM.

Weill Cornell Medicine

Simmons B, et al. *Clin Infect Dis.* 2016;62:683-694.

5-Year Risk of HCV Reinfection/Recurrence Post SVR

- HCV recurrence in high-risk and HCV/HIV groups was driven by reinfection in those with high-risk behaviors
- HCV reinfection rates (events/1,000 person-years)
 - Low-risk population: 0
 - High-risk population

19.1 (95% CI 11.4-28.2)

HCV/HIV population

32.0 (95% CI 0-123.5)

- Research need
 - Prospective data with all-oral, IFN-free DAA regimens

5-Year Risk of HCV Recurrence by Risk Group

Weill Cornell Medicine

Simmons B, et al. *Clin Infect Dis.* 2016;62:683-694.

Post SVR Monitoring

- All patients
 - Monitor LFTs at least annually
 - HCV RNA at least once, more if risk factors. No HCV antibodies (positive forever)
 - Work-up/treat abnormal LFTs
- Mild fibrosis (F0-2)
 - No HCC screening due to very low risk
 - No liver-related restrictions on lifestyle if LFTs normal
- Advanced fibrosis/cirrhosis
 - HCC screening q 6 months
 - Alcohol avoidance/restriction

Considerations for Follow-Up of SVR Patients

Weill Cornell Medicine

Serfaty L. Liver Int. 2016;36(suppl S1):67-71.

WHO: Global HCV Strategy (2016-2030)

- By 2020
 - 50% reduction in HCV incidence
 - 10% reduction in HCV-related mortality
- By 2030
 - 70% reduction in HCV incidence
 - 60% reduction in HCV-related mortality
- The strategy calls for a major increase in diagnosis of chronic infection, and for treatment coverage of eligible persons by 2030

Lanini S, et al. *Clin Microbiol Infect.* 2016;22:833-838. World Health Organization. May 2016.

Weill Cornell Medicine Available at: http://apps.who.int/iris/bitstream/10665/206453/1/WHO_HIV_2016.04_eng.pdf. 23

Eradication of HCV in the US: Nationwide Epidemiologic and Surveillance Considerations

- Assess and monitor HCV incidence in high-risk populations
 - Emerging epidemics in young people who use prescription opioids, sexually active HIV-infected MSM, and PWID
- Identify new outbreaks and emerging epidemics
 - Quickly assess the magnitude of new transmission patterns as they emerge
- Assess and monitor HCV prevalence in high-risk populations
 - Homeless, the incarcerated, PWID

Beyond the Cure: Conclusions

- HCV patients with SVR
 - Improved survival and liver-related morbidity compared wuth non-SVR patients
- Long-term follow-up studies in SVR patients
 - Regression of fibrosis varies and risk of liver-related complications remains, even in the absence of cirrhosis
- Patients with cirrhosis are still at risk of HCC
 - Comorbidities (eg, diabetes, obesity, or alcohol consumption) may play a major role in the outcome of liver disease in SVR patients without cirrhosis
- Monitoring after a cure of HCV infection remains a major challenge
- Risk of reinfection is high in PWID and MSM
- The elimination of HCV in the US is technically feasible
 - Will require a sustained national commitment to reach, test, treat, cure, and prevent every case of HCV

Weill Cornell Medicine

HIV Management Hepatitis Management THE NEW YORK COURSE

