

Management of IBS: Patient-Centered Care

What do your patients really want from you?

- They want you to listen
- Education
- Reassurance
- A positive diagnosis
- Symptom improvement
 - Treatment options explained

Photo credit: Nensuria at Freepik.

IBS, irritable bowel syndrome.

Learning Objectives

- Implement individualized treatment plans for patients with irritable bowel syndrome with constipation (IBS-C) that incorporate data from randomized controlled trials and evidence-based recommendations
- Utilize patient-centric counseling strategies for patients with IBS-C to support prompt identification of inadequate or poorly tolerated therapy and support long-term therapeutic adherence

Patient Case

JL is a 32-year-old woman with a 9-month history of constipation associated with abdominal pain and bloating.

- The patient reports having a bowel movement "about every 3 days"; she says her stools are hard and that she needs to strain to pass them
- She reports occasional abdominal pain that is alleviated by having a bowel movement, but says she has a consistent feeling of incomplete evacuation and feels bloated "most of the time"
- She has used fiber supplements and OTC laxatives to relieve her constipation with inconsistent results; the patient also expresses concerns with becoming dependent on the use of stimulant laxatives

OTC, over-the-counter.

Medical Treatments for IBS-C

- Diet
- Fiber
- Probiotics
- Osmotic agents
- Chloride channel activators
- Guanylate cyclase-C activators
- CAM

CAM, complementary and alternative medicine.

Dietary Therapy for IBS

- Elimination diet
- IgG elimination diet
- Low-carbohydrate diet
- Low-fructose/fructan diet
- Lactose-free diet
- Paleo diet
- Low-gluten diet
- Low-FODMAP diet

FODMAP, fermentable oligosaccharides, disaccharides, monosaccharides and polyols; IgG, immunoglobulin G.

	Low	-FODMAP Diet
ا Fermental	Minimizes	intake of foods high in Di-, Monosaccharides And Polyols
	Excess Fructose	Honey, apples, pears, peaches, mangos, fruit juice, dried fruit
V ice	Fructans	Wheat (large amounts), rye (large amounts), onions, leeks, zucchini
O	Sorbitol	Apricots, peaches, artificial sweeteners, artificially sweetened gums
Z	Raffinose	Lentils, cabbage, Brussels sprouts, asparagus, green beans, legumes
Shepherd SJ, et al. J Am Diet Ass Hepatol. 2010;25(2):252-258.	soc. 2006;106(10):1631-163	9; Shepherd SJ, et al. Clin Gastroenterol Hepatol. 2008;6(7):765-771; Gibson PR, et al. J Gastroenterol

RCTs Evaluating the Low-FODMAP Diet for IBS

Risk Ratio Study M-H, Random, 95% Cl 7 RCTs compared a low-FODMAP diet with various controls (N=397) Low-FODMAP vs 0.82 [0.66, 1.02] • Low-FODMAP diet was associated alternative diet with reduced overall symptoms compared to controls (RR=0.69; Low-FODMAP vs 0.44 [0.23, 0.83] 95% CI: 0.54-0.88; I²=25%) high-FODMAP diet 3 RCTs compared low-FODMAP diets with rigorous control diets Low-FODMAP vs 0.46 [0.25, 0.84] Showed the least heterogeneity usual diet between studies but also the least magnitude of effect Overall quality of the data was "very low" (GRADE criteria) FODMAP exclusion 0.44 [0.11, 1.71] then FODMAP vs placebo Most studies had high risk of bias Heterogeneity between study TOTAL (95% CI) 0.69 [0.54, 0.88] designs Imprecision in the estimate 0.005 0.1 10 200 of effect Favors experimental Favors control

GRADE, Grades of Recommendation Assessment, Development and Evaluation; I², percentage of variation across studies due to heterogeneity; MH, Mantel-Haenszel Dionne J, et al. *Am J Gastroenterol.* 2018;113(9):1290-1300.

Micronutrient Deficiencies With Low-FODMAP Diet

	Low FODMAP (n=41)			mNICE (n=37)			
Variable	Baseline	Week 4	P value within group	Baseline	Week 4	P value within group	
Energy (kcals)	2043 ± 653	1691 ± 600.7	0.01*	2005 ± 511	1835 ± 714	0.04*	
Number of daily meals	5.43 ± 1.7	4.92 ± 1.5	0.01*	5.52 ± 1.7	4.8 ± 1.4	0.004*	
Polyunsaturated fatty acids (g)	18.6 ± 7.2	17.6 ± 9.8	0.62	20.1 ± 7.9	16.1 ± 8.6	0.04*	
Retinol (mcg)	493.9 ± 379.2	350.2 ± 179.0	0.03*	427.9 ± 207.5	350.6 ± 218.7	0.12	
Thiamin (vitamin B1) (mg)	1.6 ± 0.6	1.3 ± 0.6	0.009*	1.8 ± 0.6	1.6 ± 0.8	0.32	
Riboflavin (vitamin B2) (mg)	2.0 ± 0.8	1.7 ± 0.6	0.045*	1.9 ± 0.6	1.8 ± 0.8	0.40	
Vitamin B6 (mg)	1.7 ± 0.6	2.1 ± 0.8	0.045*	1.8 ± 0.8	2.0 ± 1.1	0.40	
Calcium (mg)	969.5 ± 422.9	752.3 ± 300.3	0.009*	961.4 ± 375.8	855.1 ± 408.3	0.25	

*No significant differences from baseline were seen for daily intake of cholesterol, saturated fatty acids, monounsaturated fatty acids, caffeine, beta carotene, total alpha-tocopherol equivalents, vitamin D, vitamin E, vitamin K, vitamin C, niacin, pantothenic acid, folate, and vitamin B12.

mNICE, modified National Institute for Health and Care Excellence guideline-based diet.

Faria JP, et al. Presented at: American College of Gastroenterology Annual Scientific Meeting; October 16-18, 2017; Orlando, FL.

			Response*		RR of Unimproved	NINT
	RCTs	N	Fiber	Placebo	Symptoms (95% CI)	(95% CI)
Overall	12	591	48%	43%	0.87 (0.76-1.0)	11 (5-100)
Ispaghula	6	321	48%	36%	0.78 (0.63-0.96)	6 (3-50)
Bran	5	221	46%	46%	1.02 (0.82-1.27)	
*Improved	or resolve	ed symp	toms.			
	Insolut	ole fibe	r was not	more effec	tive than insoluble	

NNT, number needed to treat; RCTs, randomized controlled trials; RR, relative risk. Ford AC, et al. *Am J Gastroenterol*. 2014;109(10):1547-1561.

Rao S, et al. Am J Gastroenterol. 2012;107(11):1714-1724.

CSBM, complete spontaneous bowel movement. Brenner DM, et al. *Am J Gastroenterol*. 2018;113(5):735-745.

Summary

- Multiple treatment options are now available for IBS-C
- Assess symptom severity in order to recommend the best therapy
- Don't forget to focus on the basics—listen, educate, reassure
- Ensure that therapeutic trials are long enough to properly assess efficacy
- New treatment options will be available within the next few years